Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A working group from the Global Library of Underwater Biological Sounds effort collaborated with the World Register of Marine Species (WoRMS) to create an inventory of species confirmed or expected to produce sound underwater. We used several existing inventories and additional literature searches to compile a dataset categorizing scientific knowledge of sonifery for 33,462 species and subspecies across marine mammals, other tetrapods, fishes, and invertebrates. We found 729 species documented as producing active and/or passive sounds under natural conditions, with another 21,911 species deemed likely to produce sounds based on evaluated taxonomic relationships. The dataset is available on both figshare and WoRMS where it can be regularly updated as new information becomes available. The data can also be integrated with other databases (e.g., SeaLifeBase, Global Biodiversity Information Facility) to advance future research on the distribution, evolution, ecology, management, and conservation of underwater soniferous species worldwide.more » « less
-
null (Ed.)The morphometrics of fish otoliths have been commonly used to investigate population structures and the environmental impacts on ontogeny. These studies can require hundreds if not thousands of otoliths to be collected and processed. Processing these otoliths takes up valuable time, money, and resources that can be saved by automation. These structures also contain relevant information in three dimensions that is lost with 2D morphometric methods from photographic analysis. In this study, the otoliths of three populations of Coho Salmon (Oncorhynchus kisutch) were examined with manual 2D, automated 2D, and automated 3D otolith measurement methods. The automated 3D method was able to detect an 8% difference in average otolith density, while 2D methods could not. Due to the loss of information in the z-axis, and the longer processing time, 2D methods can take up to 100 times longer to reach the same statistical power as automated 3D methods. Automated 3D methods are faster, can answer a wider range of questions, and allow fisheries scientists to automate rather monotonous tasks.more » « less
-
Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.more » « less
-
The urgency for remote, reliable and scalable biodiversity monitoring amidst mounting human pressures on ecosystems has sparked worldwide interest in Passive Acoustic Monitoring (PAM), which can track life underwater and on land. However, we lack a unified methodology to report this sampling effort and a comprehensive overview of PAM coverage to gauge its potential as a global research and monitoring tool. To address this gap, we created the Worldwide Soundscapes project, a collaborative network and growing database comprising metadata from 416 datasets across all realms (terrestrial, marine, freshwater and subterranean).more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
